Auto-localization algorithm for local positioning systems
نویسنده
چکیده
This paper studies the problem of determining the position of beacon nodes in Local Positioning Systems (LPSs), for which there are no inter-beacon distance measurements available and neither the mobile node nor any of the stationary nodes have positioning or odometry information. The common solution is implemented using a mobile node capable of measuring its distance to the stationary beacon nodes within a sensing radius. Many authors have implemented heuristic methods based on optimization algorithms to solve the problem. However, such methods require a good initial estimation of the node positions in order to find the correct solution. In this paper we present a new method to calculate the inter-beacon distances, and hence the beacons positions, based in the linearization of the trilateration equations into a closed-form solution which does not require any approximate initial estimation. The simulations and field evaluations show a good estimation of the beacon node positions.
منابع مشابه
Auto-localization algorithm for local positioning systems
Article history: Received 16 February 2011 Received in revised form 16 January 2012 Accepted 1 February 2012 Available online 18 February 2012
متن کاملError Estimation for the Linearized Auto-Localization Algorithm
The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons' positions, from the linearized trilateration equations. In this paper we propose a method...
متن کاملSolving the local positioning problem using a four-layer artificial neural network
Today, the global positioning systems (GPS) do not work well in buildings and in dense urban areas when there is no lines of sight between the user and their satellites. Hence, the local positioning system (LPS) has been considerably used in recent years. The main purpose of this research is to provide a four-layer artificial neural network based on nonlinear system solver (NLANN) for local pos...
متن کاملMap-Based Microscope Positioning
In microscopy, regions of interest are usually much smaller than the whole slide area. Various microscopy related medical applications are liable to benefit greatly from microscope auto positioning in previously defined regions of interest. In this paper we present a method for image-based auto positioning on a microscope slide. The method is based on localization of a microscopic query image u...
متن کاملStandard edge detection algorithms versus conventional auto-contouring used for a three-dimensional rigid CT-CT matching
Background: To reduce uncertainties of patient positioning, the Computerized Tomography (CT) images acquired at the treatment planning time can be compared with those images obtained during radiation dose delivery. This can be followed during dose delivery procedure as Image Guided radiotherapy (IGRT) to verify the prescribed radiation dose delivery to the target as well as to monitor ...
متن کامل